Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 168765, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-37992832

RESUMEN

Chemical movement influences exposure, remediation and interventions. Understanding chemical movement in addition to chemical concentrations at contaminated sites is critical to informed decision making. Using seepage meters and passive sampling devices we assessed both diffusive and advective flux of bioavailable polycyclic aromatic hydrocarbons (PAHs) at three time points, across two seasons, at a former creosote site in St. Helens, Oregon, United States. To our knowledge, this is the first time both diffusive and advective fluxes have been measured simultaneously at a contaminated site. Concentrations of 39 parent PAHs were determined by gas chromatography triple quadrupole mass spectrometry. Across both seasons and all sites, diffusive flux of PAHs was up to three orders of magnitude larger than advective flux. Release of PAHs from sediments and water were identified, likely from legacy contamination, as well as deposition from the air into the site from contemporary and other sources. The majority of PAH movement was comprised of three and four ring PAHs. Chemical movement on the site was found to be spatially and temporally variable. Volatilization decreased and atmospheric deposition increased from summer to fall. At the locations with higher levels of contamination, sum PAH release from sediments decreased by more than two orders of magnitude from summer to late fall. These data reflect the spatial heterogeneity and temporal variability of this site and demonstrate the importance of seasonality in assessing chemical movement at contaminated sites. Results from this study can inform future legacy site assessments to optimize remediation strategies and assess remediation effectiveness.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Contaminantes Atmosféricos/análisis , Contaminantes Químicos del Agua/análisis , Cromatografía de Gases y Espectrometría de Masas , Estaciones del Año , Hidrocarburos Policíclicos Aromáticos/análisis
2.
Toxics ; 10(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36355943

RESUMEN

There is a growing need to establish alternative approaches for mixture safety assessment of polycyclic aromatic hydrocarbons (PAHs). Due to limitations with current component-based approaches, and the lack of established methods for using whole mixtures, a promising alternative is to use sufficiently similar mixtures; although, an established framework is lacking. In this study, several approaches are explored to form sufficiently similar mixtures. Multiple data streams including environmental concentrations and empirically and predicted toxicity data for cancer and non-cancer endpoints were used to prioritize chemical components for mixture formations. Air samplers were analyzed for unsubstituted and alkylated PAHs. A synthetic mixture of identified PAHs was created (Creosote-Fire Mix). Existing toxicity values and chemical concentrations were incorporated to identify hazardous components in the Creosote-Fire Mix. Sufficiently similar mixtures of the Creosote-Fire Mix were formed based on (1) relative abundance; (2) toxicity values; and (3) a combination approach incorporating toxicity and abundance. Hazard characterization of these mixtures was performed using high-throughput screening in primary normal human bronchial epithelium (NHBE) and zebrafish. Differences in chemical composition and potency were observed between mixture formation approaches. The toxicity-based approach (Tox Mix) was the most potent mixture in both models. The combination approach (Weighted-Tox Mix) was determined to be the ideal approach due its ability to prioritize chemicals with high exposure and hazard potential.

3.
Environ Sci Technol ; 56(14): 10042-10052, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35803593

RESUMEN

Air quality impacts from wildfires are poorly understood, particularly indoors. As frequencies increase, it is important to optimize methodologies to understand and reduce chemical exposures from wildfires. Public health recommendations use air quality estimates from outdoor stationary air monitors, discounting indoor air conditions, and do not consider chemicals in the vapor phase, known to elicit adverse effects. We investigated vapor-phase polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air before, during, and after wildfires using a community-engaged research approach. Paired passive air samplers were deployed at 15 locations across four states. Twelve unique PAHs were detected only in outdoor air during wildfires, highlighting a PAH exposure mixture for future study. Heavy-molecular-weight (HMW) outdoor PAH concentrations and average Air Quality Index (AQI) values were positively correlated (p < 0.001). Indoor PAH concentrations were higher in 77% of samples across all sampling events. Even during wildfires, 58% of sampled locations still had higher indoor PAH air concentrations. When AQI values exceeded 140 (unhealthy for sensitive groups), outdoor PAH concentrations became similar to or higher than indoors. Cancer and noncancer inhalation risk estimates from vapor-phase PAHs were higher indoors than outdoors, regardless of the wildfire impact. Consideration of indoor air quality and vapor-phase PAHs could inform public health recommendations regarding wildfires.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Hidrocarburos Policíclicos Aromáticos , Incendios Forestales , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Gases , Hidrocarburos Policíclicos Aromáticos/análisis
4.
Anal Bioanal Chem ; 413(6): 1651-1664, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33506340

RESUMEN

Parent and alkylated polycyclic aromatic hydrocarbons (PAHs) are present in a number of different sources in varying proportions depending on the source material and weathering. This range of PAH sources can make it difficult to determine the origin of exposure(s). Ratios of alkylated and parent PAHs have been applied as a forensic tool to distinguish between different sources. However, few studies have examined PAH ratios comprehensively as indicators for sourcing beyond a single study area or matrix type. In this paper, we introduce an expanded analytical method based on ASTM D7363-13a which we adapted for a gas chromatography triple quadrupole mass spectrometry instrument. The modifications increase selectivity and sensitivity compared to the ASTM method. We added five alkylated series to the method. This method has then been applied to 22 independent forensic ratios. We evaluated the method and the forensic ratios with certified reference materials and known environmental samples. This analytical method and thirteen PAH ratios were found to accurately predict sources of PAHs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...